

International Conference on

Cryosphere and related hazards in High Mountain Asia in a changing

climate (01.11.2022 – 04.11.2022)

High resolution snow depth estimation in Hindu Kush Himalayan regions -Challenges and Way Forward

By RAAJ Ramsankaran Associate Professor, Department of Civil Engineering. Email: <u>ramsankaran.civil@iitb.ac.in</u>

4th Nov, 2022

Acknowledgment

Mr. Srinivasa Rao PhD Student

Dr. Dhiraj Singh (Post-Doctoral Fellow)

Funding Agency:

Defence Geoinformatics Research Establishment [Formerly Snow and Avalanche Study Establishment (SASE)] Govt of India

IT Bombay

Contents

Hindu Kush Himalayan Region

- Extends over 8 countries between 61° to 105° East and 16° to 40° North
- Area = $\sim 4.2 \times 10^6 \text{ km}^2$
- Water tower of Asia, Third pole
- Affects lives of 2 billion population
- Major river head waters Indus, Ganges, Amudarya etc.
- Cryosphere important part of ecosystem
- Snow in this region linked with water security, local hazards etc.

Annual cycle of snow depth

HKK region as given by different GCMs (1980-2005)²

Average MODIS Snow Cover over Indian Himalayan basins (2000-2011)³

Global trend of Snow depth and SWE studies as per keyword search in SCOPUS database (2000-2020)

Need for snow depth monitoring in Himalayan

Snow Depth Retrieval Methods:

Snow Depth Approaches – Merits Comparison (for different platforms)

	Ground	Ground + Space	Air	vir Spac	
Merits	In-situ	GNSS	UAV (Lidar & Optical sensors)	PM W	AM W
Snow depth accuracy					
Simple (direct measurement of snow depth)					
Daily temporal resolution					
Good spatial resolution					
Good spatial coverage					
Deep snow pack monitoring					

Capabilities:

Excellent;

Moderate;

Poor;

Not applicable;

Snow Depth Approaches – Limitations Comparison (for different platforms)

	Ground	Ground Ground+ space		Space	
Limitations	In-situ	GNSS	UAV (Lidar & Optical sensors)	PMW	AM W
Sparsely distributed discrete measurements					
Limitations in spatial coverage					
Inaccessible terrain					
Requires work in severe weather conditions					
Maintenance and measurement issues					
Coarse resolution					
Wet snow problems verity/Susceptibility: High; Modera	te:	less/Not p	resent:		

Review of PMW SD Techniques Over Indian Himalaya

Authors	Study Area	Data / Method/ Resolution	Maximum Validation Depth	Error	Limitation	Operational Algorithms (Y/N)
Singh et al., (2007)	Greater Himalayan	SSM/I/ Regression / 25 km	210	50 cm	Limited validation point, coarse resolution	Ν
Das and Sarwade (2008)	Greater Himalayan	AMSR-E/ Regression/	70 cm	20.34	Limited validation point , coarse resolution	Ν
Gusain et al., (2016)	Lower and middle Himalaya	MODIS, DEM & in-situ data/ Spatial interpolation/ 500 m	300 cm	42 cm	Large number of in-situ data required every time and algorithm is elevation dependent	Yes
Singh et al., (2020)	Middle Himalaya	AMSR-2/Regressio n /10 km	140 cm	16 cm	coarse resolution, simple regression model, applicable for middle Himalaya	Yes, for middle Himalaya

Our ongoing works (related to snow depth) at H-RSA Laboratory – IIT Bombay

12

In this presentation

AMSR-2 PMW data

- •Onboard GCOM-WI satellite (2012-23)
- Orbital height: ~700km
- 14 channels in 7 frequencies
- Ascending pass: I:30 PM
- Descending pass: 1:30 AM
- •Swath: 1450 km
- Global coverage: once a day
- Spatial resolution: varies with frequency
- Predecessor: AMSR-E over Aqua (2002-16)
- Successor: AMSR-3 over GOSAT-GW (2023-30)

I. Multifactor Model - Methodology

IIT Bombay

Case study: 23 Feb 2019

Comparison of PMW SD model with global and regional models over WH

19

2. Machine Learning Model - Methodology

Results for Machine Learning Model – Middle Himalayan Zone

- Improved correlation in deep snow estimates
- Reduced RMSE, MAE error compared to Multifactor, and other models

Challenges for Model Development

IIT Bombay

Way forward

